Styrozone® Basements

INSULATION FOR BASEMENTS

- High performance rigid extruded polystyrene insulation – thermal conductivities as low as 0.034 W/m-K
- High compressive strength
- Resistant to ground moisture penetration
- Unaffected by air infiltration
- Easy to handle and install
- Ideal for new build and refurbishment
- Non–deleterious material
- Manufactured with a blowing agent that has zero ODP
Typical Constructions and U-values

Assumptions

The U-values in the tables that follow have been calculated, under a management system certified to the BBA Scheme for Assessing the Competency of Persons to Undertake U-value and Condensation Risk Calculations, using the method detailed in BS / I.S. EN ISO 13370: 2007 (Thermal performance of buildings. Heat transfer via the ground. Calculation methods), and using the conventions set out in BR 443 (Conventions for U-value calculations). They are valid for the constructions shown in the details immediately above each table. These examples assume that the basement walls are 300 mm thick and the height of the basement walls are 2.5 m.

Unlike roofs, walls and intermediate floors, U-value calculations for basement floors cannot be calculated with reference to the construction detail alone. Heat loss from basement floors depends upon the ratio of exposed floor perimeter to the total floor area, the thickness of the basement wall and depth of the basement.

Floor dimensions should be measured between the finished internal surfaces of the external walls. Non–usable heated space such as ducts and stairwells should be included when determining the area of the floor. Unheated spaces outside of the insulated fabric, such as attached garages or porches, should be excluded when determining the area of the floor, but the length of the wall between the heated building and the unheated space should be included when determining the perimeter. The floor dimensions of semi–detached, terraced or other joined premises / dwellings can be taken either as those of the premises / dwelling itself or those of the whole building. Where extensions to existing buildings are under consideration, the floor dimensions should be taken as those of the extension.

If the P/A ratio lies between two of the numbers shown in the tables to follow, for a safe estimate, please use the P/A ratio shown that is the next highest i.e. for 0.57 use 0.6.

NB The figures quoted are for guidance only. A detailed U-value calculation should be completed for each project.

NB For the purposes of these calculations, using the method as detailed in BS / I.S. EN ISO 13370: 2007, the soil has been assumed to be sand or gravel, the wall insulation is assumed to overlap the floor insulation by minimum 150 / 225* mm, and the standard of workmanship has been assumed good, and therefore the correction factor for air gaps has been ignored.

NB If your construction is different from those specified, and / or to gain a comprehensive U-value calculation for your project, please consult the Kingspan Insulation Technical Service Department for assistance (see rear cover).

* 150 mm applies to the UK and 225 mm to the Republic of Ireland.
Basement Floors

Basement Insulated with Kingspan Styrozone® N 300 R

<table>
<thead>
<tr>
<th>Insulant Thickness (mm)</th>
<th>Perimeter / Area (m–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
</tr>
<tr>
<td>60</td>
<td>0.23</td>
</tr>
<tr>
<td>70</td>
<td>X</td>
</tr>
<tr>
<td>80</td>
<td>0.20</td>
</tr>
<tr>
<td>90</td>
<td>0.18</td>
</tr>
<tr>
<td>100</td>
<td>0.17</td>
</tr>
<tr>
<td>110</td>
<td>0.16</td>
</tr>
<tr>
<td>120</td>
<td>0.15</td>
</tr>
<tr>
<td>130</td>
<td>0.14</td>
</tr>
<tr>
<td>140</td>
<td>0.13</td>
</tr>
<tr>
<td>150</td>
<td>0.12</td>
</tr>
<tr>
<td>160</td>
<td>0.11</td>
</tr>
<tr>
<td>170</td>
<td>0.10</td>
</tr>
<tr>
<td>180</td>
<td>0.09</td>
</tr>
<tr>
<td>190</td>
<td>X</td>
</tr>
<tr>
<td>200</td>
<td>X</td>
</tr>
<tr>
<td>210</td>
<td>X</td>
</tr>
<tr>
<td>220</td>
<td>X</td>
</tr>
<tr>
<td>230</td>
<td>X</td>
</tr>
<tr>
<td>240</td>
<td>X</td>
</tr>
<tr>
<td>250</td>
<td>X</td>
</tr>
<tr>
<td>260</td>
<td>X</td>
</tr>
<tr>
<td>270</td>
<td>X</td>
</tr>
<tr>
<td>280</td>
<td>X</td>
</tr>
<tr>
<td>290</td>
<td>X</td>
</tr>
<tr>
<td>300</td>
<td>X</td>
</tr>
</tbody>
</table>

Where multiple layers of insulation of different thicknesses are used, the thickest layer should be installed as the outermost layer in the construction.

NB Refer to local distributor or Kingspan Insulation price list for current stock and non-stock sizes.

![Diagram](image)

Figure 1

Basement Walls

Calculations for basement walls are based on the height of the basement, the P/A ratio of the basement floor and the thermal performance of the basement floor. Once all three variables have been obtained, please contact the Kingspan Insulation Technical Service Department (see rear cover) for the U–values to be calculated.
Design Considerations

Heat Loss and Linear Thermal Bridging

Basic Principles
Linear thermal bridging describes the heat loss or gain that occurs at junctions between elements e.g. where a basement wall meets the floor, or at junctions around openings in the building fabric where the thermal insulation layer is discontinuous e.g. sills, jambs and lintels.

Interruptions within the insulation layer by materials with poorer insulating properties can result in a thermal bridge, which in turn can lead to problems of condensation and mould growth, especially if there is a drop in surface temperature.

The heat flow at these junctions and opening locations, over and above that through the adjoining plane elements, is the linear thermal transmittance of the thermal bridge: measured in W/m-K; referred to as a ‘ψ–value’; and expressed as a ‘ψ–value’.

The lower the ψ–value, the better the performance. ψ–values are taken into account in the calculation methodologies e.g. the Standard Assessment Procedure (SAP) that are used to assess the operational CO₂ emissions and, where applicable, the fabric energy efficiency of buildings.

ψ–values can comprise either, or a combination of, approved, calculated or assumed values.

Approved details, such as the Accredited Construction Details (England & Wales / Scotland / Northern Ireland) and Acceptable Construction Details (Republic of Ireland), collectively referred to here as ACDs, can uplift performance to provide a clear starting point towards achieving compliance, but they are limited in scope and applicability. The greatest opportunity for mitigating the impact of linear thermal bridges can come from following accurately ‘modelled’ details that take into account the following design considerations.

Reducing Linear Thermal Bridging
Detailing at junctions to minimise the effects of thermal bridging and the associated risk of condensation or mould growth is important and there are some simple design considerations that can be adopted to help mitigate the risks and to reduce heat losses.

- Care is required to ensure continuation of insulation wherever possible between the basement wall and floor and also at the junction between the external wall, ground floor and basement wall for best thermal performance. Where this is not possible, the insulation should be overlapped and ideally, insulation material introduced between.
- The best approach to minimise cold bridging is to take insulation externally of the construction and junction and to overlap this such that the wall insulation extends past the level of the floor insulation.
- In order to minimise cold bridging at the edge of the floor, the distance between the top surface of the floor insulation or perimeter insulation upstand, and the bottom of the wall insulation must be a minimum of 150 / 225* mm. The further down the wall insulation extends past the floor insulation, the better the thermal performance of the junction between the wall and the floor.
 * 150 mm applies to the UK and 225 mm to the Republic of Ireland.
- Perimeter upstand insulation can also help to reduce heat losses from the junction between the floor and walls. The upstand insulation further increases the distance that the heat has to travel in order to escape through the junction, which therefore helps to reduce heat loss. Omitting this, or using a poorer performing insulation, can increase these losses.
- Using better thermally performing blockwork for the basement and above ground wall constructions, particularly in adjacency to the junction with the floor, can assist with reducing heat losses from the junctions.
- An internal lining of insulation on the warm side of the construction can also help to reduce heat losses through the junction. The internal lining, such as Kingspan Kooltherm® K118 Insulated Plasterboard, could be used over the whole wall area, or a thin insulation layer could be used behind the wall lining adjacent to the junction to help reduce losses. A combination of external and internal insulation layers can be particularly effective to reduce cold bridging.

For further advice on details to reduce linear thermal bridging please contact the Kingspan Insulation Technical Service Department (see rear cover for details).
Sustainability & Responsibility

Kingspan Insulation has a long-term commitment to sustainability and responsibility: as a manufacturer and supplier of insulation products; as an employer; as a substantial landholder; and as a key member of its neighbouring communities.

A report covering the sustainability and responsibility of Kingspan Insulation Ltd’s British operations at its Pembridge, Herefordshire and Selby, North Yorkshire manufacturing facilities is available at www.kingspaninsulation.co.uk/sustainabilityandresponsibility.

Specification Clause

Kingspan Styrozone® should be described in specification as:

The basement wall / floor insulation shall be *Kingspan Styrozone*® (insert grade) ____ mm thick: comprising high performance rigid extruded polystyrene insulation. The product shall be manufactured, with a blowing agent that has zero Ozone Depletion Potential (ODP) and shall be installed in accordance with the instructions issued by Kingspan Insulation Limited.

NBS Specifications

Details also available in NBS Plus.
NBS users should refer to clause(s):
J30 330 (Standard and Intermediate)
J40 380 (Minor Works)

Building Information Modelling (BIM)

Kingspan Insulation’s BIM objects can be downloaded in Revit and in IFC formats. For more information please visit www.kingspaninsulation.co.uk/bim.

Product Selection

The high compressive strength of *Kingspan Styrozone*® makes it particularly suitable for use where floor loads are to be severe.

Consideration must be given to which *Kingspan Styrozone*® product is most appropriate for the required application.

A table of the key distinguishing features is shown below.

<table>
<thead>
<tr>
<th>Product</th>
<th>Thermal Conductivity (W/m-K)</th>
<th>Density (kg/m³)</th>
<th>Compressive Strength at 10% compression (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrozone® N 300 R</td>
<td>0.034–0.036</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>Styrozone® N 500 R</td>
<td>0.035–0.036</td>
<td>35</td>
<td>500</td>
</tr>
<tr>
<td>Styrozone® N 700 R</td>
<td>0.036</td>
<td>45</td>
<td>700</td>
</tr>
</tbody>
</table>

Design Standards

Consideration should be given to the recommendations of BS 8102: 2009 (Code of practice for protection of structures against water from the ground), BS 8215: 1991 (Code of practice for design and installation of damp proof courses in masonry construction) and the information given in Building Research Establishment Digest 104 (Floor Screeds).

Waterproofing

BS 8102: 1990 (Code of practice for protection of structures against water from the ground) provides guidance on protection of basements against ground water. The level of protection needed by a new basement in housing, offices, restaurants, leisure centres etc. is Grade 3 (refer to BS 8102 for a full list). Grade 3 protection consists of one of the following waterproofing options.

Tanking System – A continuous waterproofing membrane surrounding the exterior of the basement structure, preventing ground water from penetrating the basement construction. Available in mastic asphalt tanking, cementitious renders, self-adhesive membranes and liquid applied membranes (see Figure 1).

Waterproofed Concrete – A continuous waterproofed concrete, mixed in accordance with BS 8007: 1987 (Code of practice for design of concrete structures for retaining aqueous liquids). The waterproofed concrete is used as the exterior of the construction to prevent water penetration.

Drained Cavity & DPM – An effective drainage system where moisture that seeps through a monolithic wall, into the cavity is collected and channelled away under the floor. Using a DPM in conjunction with the drained cavity prevents any water penetrating the structure.
Sitework

General
- Kingspan Insulation recommends that suitable professional advice is sought when designing basements.

Drainage
- Water collecting at the base of the Kingspan Styrozone® boards must be drained away by filter drains located around the perimeter of the basement.
- To construct a filter drain, a perforated / porous drainage pipe should be positioned 200 mm below the floor level of the basement and should be surrounded by a free draining aggregate e.g. course gravel.
- A geotextile membrane must be placed around the gravel to prevent fines blocking the drain.
- Depending upon ground conditions, drains may be connected to surface drainage systems or soakaways.

Basement Floors
Installation Below a Floor Slab
- The site should be prepared and foundations, where appropriate, built to damp proof course (DPC) level.
- A thin sand blinding may be used to achieve a continuous level surface free from projections over rolled hardcore.
- The damp proof membrane (minimum 300 micron / 1200 gauge polythene) can be laid with joints well lapped and folded, to prevent the passage of ground water, either directly over the well compacted hardcore prior to laying the insulation boards, or over the insulation boards.
- The membrane should be laid under the basement wall, and under the triangular shaped piece of insulation placed between the concrete slab and the exterior of the basement wall, and lapped by 300 mm under the basement wall tanking membrane.
- Insulation boards should always be loose–laid break–bonded, with the joints lightly butted.
- If two layers of insulation are required, they should be horizontally offset relative to each other so that, as far as possible, the board joints in the two adjacent layers do not coincide with each other (see Figure 2).

Installation Below a Floor Screed
- Concrete slabs should be allowed to dry out fully prior to the installation of the insulation boards (average 1 day per mm of slab thickness).
- The surface of the slab should be smooth, flat and free from projections. Rough cast slabs should be levelled using a thin sand blinding to ensure boards are continuously supported.
- The damp proof membrane (minimum 300 micron / 1200 gauge polythene) should be laid with joints well lapped and folded, to prevent the passage of ground water, either directly over the floor slab prior to laying the insulation boards, or over the insulation boards.
- The membrane should be laid under the basement wall, and over the triangular shaped piece of insulation placed between the concrete slab and the exterior of the basement wall, and lapped by 300 mm under the basement wall tanking membrane.
Insulation boards should always be loose–laid break–bonded, with the joints lightly butted.

If two layers of insulation are required, they should be horizontally offset relative to each other so that, as far as possible, the board joints in the two adjacent layers do not coincide with each other (see Figure 2).

A strip of rigid insulation board (minimum 20 mm thick) should be placed vertically around the perimeter of the floor slab in order to prevent cold bridging. The top of the strip of insulation board should be level with the top of the floor screed and the bottom should be level with the bottom of the horizontal floor insulation, and closely butted up to it.

Insulation boards should be overlaid with a polythene sheet (not less than 125 micron / 500 gauge), to prevent the wet screed penetrating the joints between the boards, and to act as a vapour control layer. Ensure the polythene sheet has 150 mm overlaps and is taped at the joints.

Use sand and cement screed laid to a minimum thickness of 65 mm for domestic construction and 75 mm elsewhere.

Basement Walls

A triangular shaped piece of Kingspan Styrozone® should be placed between the concrete slab and the exterior of the basement wall to create a slope (see Figure 1) and a platform for the basement wall insulation.

The damp proof membrane should be laid under the basement wall and the triangular shaped piece of insulation, and connect with the basement wall tanking membrane in accordance with the tanking membrane manufacturer’s recommendations.

A tanking membrane is applied to the external face of the basement wall, to prevent water entering the basement structure.

The insulation board should be installed outside of the tanking membrane.

A cavity drainage membrane or layer of washed no fines gravel should be installed outside of the insulation boards.

This relieves hydrostatic pressure and channels water to the foundation drain.

The membrane or gravel should be covered with a geotextile layer to prevent fines from blocking the drainage material.

The ground around the structure must slope away from the basement wall to ensure rainwater drains away from the building.

Waterstops

When using reinforced concrete as the main structure of the basement, waterstops must be installed at the junctions where day joints have been made in the structure to prevent water leakage.

Refer to:

Movement Joints (UK) Ltd +44 (0) 1354 60 79 60
www.mjuk.co.uk

Fosroc Ltd +44 (0) 1827 262 222
www.fosroc.com

Beton Construction Materials Ltd +44 (0) 1256 353 146
www.betonconmat.co.uk

Wheeled / Foot Traffic

Ensure boards are protected during installation from wheeled / foot traffic by using scaffold planks or other protective measures.

General

Cutting

Cutting should be carried out either by using a fine toothed saw, or by scoring with a sharp knife and snapping the board over a straight edge.

Ensure accurate trimming to achieve close–butting joints and continuity of insulation.

Availability

Kingspan Styrozone® is available through specialist insulation distributors and selected builders’ merchants throughout the UK, and Ireland.

Packaging and Storage

The polyethylene packaging of Kingspan Insulation products, which is recyclable, should not be considered adequate for outside protection.

Ideally, boards should be stored inside a well ventilated building. If, however, outside storage cannot be avoided, then the boards should be stacked clear of the ground and covered with a pale pigmented polythene sheet or weatherproof tarpaulin.

Kingspan Styrozone® should not be left in the sun covered by either a transparent or a dark plastic sheet, since in both cases, board temperatures can build up to a level hot enough to appreciably alter board dimensions or cause warping.

Health and Safety

Kingspan Insulation products are chemically inert and safe to use.

A report covering the sustainability and responsibility of Kingspan Insulation Ltd’s British operations is available at www.kingspaninsulation.co.uk/safety or www.kingspaninsulation.ie/safety.

Warning – do not stand on or otherwise support your weight on this product unless it is fully supported by a load-bearing surface.
Product Details

Composition

Kingspan Styrozone® N 300 R, N 500 R and N 700 R are high performance rigid extruded polystyrene insulants with a fibre-free core. They are manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP) and have a smooth, dense skin on both faces.

Standard Dimensions

All products in the *Kingspan Styrozone®* range are available in the following standard size:

<table>
<thead>
<tr>
<th>Nominal Dimension</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (m)</td>
<td>1.25</td>
</tr>
<tr>
<td>Width (m)</td>
<td>0.6</td>
</tr>
<tr>
<td>Insulant Thickness (mm)</td>
<td>Refer to local distributor or Kingspan Insulation’s price list for current stock and non-stock sizes</td>
</tr>
<tr>
<td>Edge Profile</td>
<td>Rebated</td>
</tr>
</tbody>
</table>

Compressive Strength

The compressive strength of *Kingspan Styrozone®* is as follows:

Kingspan Styrozone® N 300 R – 300 kPa;
Kingspan Styrozone® N 500 R – 500 kPa; and
Kingspan Styrozone® N 700 R – 700 kPa,

at 10% compression, when tested to EN 826: 2013 (Thermal insulating products for building applications. Determination of compression behaviour).

Thermal Expansion

The linear thermal expansion coefficient of *Kingspan Styrozone®* is 0.07 mm/m-K.

Water Vapour Resistivity

The products typically achieve a resistivity greater than 750 MN-s/g-m, when tested in accordance with EN 12086: 1997 (Thermal insulating products for building applications. Determination of water vapour transmission properties).

Absorption of Moisture

Kingspan Styrozone® is highly resistant to water absorption. It is resistant to the passage of water vapour, and unaffected by repeated freeze/thaw cycles.

Durability

If correctly installed, *Kingspan Styrozone®* can have an indefinite life. Its durability depends on the supporting structure and the conditions of its use.

Resistance to Solvents, Fungi & Rodents

Kingspan Styrozone® is resistant to most commonly occurring construction materials such as lime, cement, plaster, anhydrous gypsum, solvent-free bituminous compounds, water-based wood preservatives, as well as alcohols, acids and alkalis. Certain organic materials such as solvent-based wood preservatives, coal tar and derivatives (creosote), paint thinners and common solvents (e.g. acetone, ethyl acetate, petrol, toluene and white spirit), will attack *Kingspan Styrozone®,* resulting in softening, shrinkage and possible dissolution, with a consequent loss of performance.

Kingspan Styrozone® does not provide any food value to vermin and is not normally attractive to them.

Maximum Service Temperature

Kingspan Styrozone® should not be brought into direct contact with high temperature heat sources. The maximum service temperature of *Kingspan Styrozone®* is 75°C.
Thermal Properties

The λ-values and R-values detailed below are quoted in accordance with EN 13164: 2008 (Thermal insulation products for buildings – Factory made products of extruded polystyrene (XPS) – Specification).

Thermal Conductivity

The boards achieve a thermal conductivity (λ-value) of Kingspan Styrozone® N 300 R is:
- 0.034 W/m-K (insulant thickness 30 mm);
- 0.035 W/m-K (insulant thickness 40–60 mm); and
- 0.036 W/m-K (insulant thickness > 60 mm).

Kingspan Styrozone® N 500 R is:
- 0.035 W/m-K (insulant thickness 50–60 mm); and
- 0.036 W/m-K (insulant thickness > 60 mm).

Kingspan Styrozone® N 700 R is:
- 0.036 W/m-K (insulant thickness ≥ 50 mm).

Thermal Resistance

Thermal resistance (R-value) varies with thickness and is calculated by dividing the thickness of the board (expressed in metres) by its thermal conductivity. The resulting number is rounded down to the nearest 0.05 (m².K/W).

<table>
<thead>
<tr>
<th>Insulant Thickness (mm)</th>
<th>Thermal Resistance (m².K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N 300 R</td>
</tr>
<tr>
<td>30</td>
<td>0.85</td>
</tr>
<tr>
<td>40</td>
<td>1.10</td>
</tr>
<tr>
<td>50</td>
<td>1.40</td>
</tr>
<tr>
<td>60</td>
<td>1.70</td>
</tr>
<tr>
<td>80</td>
<td>2.20</td>
</tr>
<tr>
<td>100</td>
<td>2.75</td>
</tr>
<tr>
<td>120</td>
<td>3.30</td>
</tr>
<tr>
<td>140</td>
<td>3.85</td>
</tr>
</tbody>
</table>

NB Multiple layers of insulation are required for higher thermal resistances.

NB Refer to local distributor or Kingspan Insulation price list for current stock and non-stock sizes.

NB Kingspan Styrozone® may be delivered in packaging bearing alternative product branding.

Insulation Product Benefits

Kingspan OPTIM-R® Vacuum Insulation Panel (VIP)

Products

- With an aged declared value thermal conductivity of 0.007 W/m-K, these products provide an insulating performance that is up to five times better than commonly used insulation materials.
- Provides high levels of thermal efficiency with minimal thickness.
- Over 90% (by weight) recyclable.

Kingspan Kooltherm® Range Products

- With a thermal conductivity of 0.018–0.023 W/m-K these are the most thermally efficient insulation products commonly used.
- The thinnest commonly used insulation products for any specific U-value.
- Each product achieves the required fire performance for its intended application.
- Manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP).

Kingspan Thermo™ Range Products

- With a thermal conductivity of 0.022–0.028 W/m-K these are amongst the more thermally efficient insulation products commonly used.
- Each product achieves the required fire performance for its intended application.
- Manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP).

Kingspan Styrozone® Range Products

- Rigid extruded polystyrene insulation (XPS) has the necessary compressive strength to make it the product of choice for specialist applications such as heavy duty flooring, car park decks and inverted roofing.
- Each product achieves the required fire performance for its intended application.
- Manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP).

All Products

- Unaffected by air infiltration – a problem that can be experienced with mineral fibre and which can reduce thermal performance.
- Safe and easy to install.
- If installed correctly, can provide reliable long term thermal performance over the lifetime of the building.
Contact Details

Customer Service
For quotations, order placement and details of despatches please contact the Kingspan Insulation Customer Service Department on the numbers below:

UK
- Tel: +44 (0) 1544 388 601
- Fax: +44 (0) 1544 388 888
- email: customerservice@kingspaninsulation.co.uk

Ireland
- Tel: +353 (0) 42 979 5000
- Fax: +353 (0) 42 975 4299
- email: info@kingspaninsulation.ie

Literature & Samples
Kingspan Insulation produces a comprehensive range of technical literature for specifiers, contractors, stockists and end users. The literature contains clear user friendly advice on typical design; design considerations; thermal properties; sitework and product data.

For copies please contact the Kingspan Insulation Marketing Department, or visit the Kingspan Insulation website, using the details below:

UK
- Tel: +44 (0) 1544 387 384
- Fax: +44 (0) 1544 387 484
- email: literature@kingspaninsulation.co.uk
- www.kingspaninsulation.co.uk/literature

Ireland
- Tel: +353 (0) 42 979 5000
- Fax: +353 (0) 42 975 4299
- email: info@kingspaninsulation.ie
- www.kingspaninsulation.ie/literature

Tapered Roofing
For technical guidance, quotations, order placement and details of despatches please contact the Kingspan Insulation Tapered Roofing Department on the numbers below:

UK
- Tel: +44 (0) 1544 387 383
- Fax: +44 (0) 1544 387 483
- email: tapered@kingspaninsulation.co.uk

Ireland
- Tel: +353 (0) 42 975 4297
- Fax: +353 (0) 42 975 4296
- email: tapered@kingspaninsulation.ie

Technical Advice / Design
Kingspan Insulation supports all of its products with a comprehensive Technical Advisory Service. Calculations can be carried out to provide U-values, condensation / dew point risk, required insulation thicknesses etc…

U-value calculations can also be carried out on the Kingspan Insulation U-value Calculator, available for free online at www.uvalue-calculator.co.uk or downloaded as an App.

The Kingspan Insulation Technical Service Department can also give general application advice and advice on design detailing and fixing etc… Site surveys are also undertaken as appropriate.

The Kingspan Insulation British Technical Service Department operates under a management system certified to the BBA Scheme for Assessing the Competency of Persons to Undertake U-value and Condensation Risk Calculations.

Please contact the Kingspan Insulation Technical Service Department on the numbers below:

UK
- Tel: +44 (0) 1544 387 382
- Fax: +44 (0) 1544 387 482
- email: technical@kingspaninsulation.co.uk

Ireland
- Tel: +353 (0) 42 975 4297
- Fax: +353 (0) 42 975 4296
- email: technical@kingspaninsulation.ie

General Enquiries
For all other enquiries contact Kingspan Insulation on the numbers below:

UK
- Tel: +44 (0) 1544 388 601
- Fax: +44 (0) 1544 388 888
- email: info@kingspaninsulation.co.uk

Ireland
- Tel: +353 (0) 42 979 5000
- Fax: +353 (0) 42 975 4299
- email: info@kingspaninsulation.ie

Kingspan Insulation Ltd. reserves the right to amend product specifications without prior notice. Product thicknesses shown in this document should not be taken as being available ex-stock and reference should be made to the current Kingspan Insulation price-list or advice sought from Kingspan Insulation’s Customer Service Department (see above left). The information, technical details and fixing instructions etc. included in this literature are given in good faith and apply to uses described. Recommendations for use should be verified for suitability and compliance with actual requirements, specifications and any applicable laws and regulations. For other applications or conditions of use, Kingspan Insulation offers a Technical Advisory Service (see above), the advice of which should be sought for uses of Kingspan Insulation products that are not specifically described herein. Please check that your copy of this literature is current by contacting the Kingspan Insulation Marketing Department (see left).